Matemáticas Física y Química
FOCOS Y DISTANCIAS FOCALES EN LAS LENTES. POTENCIA DE UNA LENTE. CONSTRUCCIÓN DE IMÁGENES EN LAS LENTES:
Del mismo modo que se hace con el dioptrio y espejos, en las lentes es posible definir y utilizar el concepto de FOCO y DISTANCIA FOCAL.
En el caso de la DISTANCIA FOCAL IMAGEN:
Si suponemos un objeto lo suficientemente alejado como para suponer que s = ∞, los rayos procedentes de este objeto vienen paralelos al eje óptico y la aplicación de esta realidad en la ECUACIÓN FUNDAMENTAL DE LAS LENTES DELGADAS:
Ya que al dividir por infinito se nos queda cero.
Esta distancia imagen s’, depende del material de la lente (n) y de sus radios de curvatura, es por lo tanto una cantidad fija que depende de la lente, es un PUNTO FIJO, es LA DISTANCIA FOCAL IMAGEN DE LA LENTE (f’), a la que se encuentra EL FOCO IMAGEN DE LA LENTE (F’). Por ello, la ecuación que nos permite calcular la distancia focal imagen de la lente es:
A esta ecuación en la que figura el valor de la distancia focal imagen se le denomina tambien FÓRMULA DEL FABRICANTE (O DEL CONSTRUCTOR) DE LENTES.
Si la lente es CONVERGENTE (más gruesas en su parte central que en los extremos – esquemáticamente se representa mediante una línea acabada en puntas de flecha que apuntan hacia fuera-) IR A TIPOS DE LENTES, nos encontramos siempre que el término:
Es siempre positivo, ya que en los tipos habituales de lente convergente:
BICONVEXAS (R1 >0, R2 < 0)
PLANO CONVEXAS (R1 > 0, R2 = ¥ )
MENISCOCONVERGENTES (R1 > 0, R2 > 0 y R1 < R2)
De la relación de los radios queda un término positivo, con lo que la distancia focal imagen (f’) será siempre positiva resultando que el foco imagen está a la derecha de la lente, quedando el comportamiento de los rayos como el que sigue y la imagen que proyecta una lente convertente es REAL (imagen que se forma al cortarse en un punto rayos que convergen):
Sin embargo, si la lente es DIVERGENTE (más gruesas en los extremos que en la parte central – esquemáticamente se representan mediante una línea recta acabada en puntas de flecha invertidas, apuntando hacia dentro-), nos encontramos que el término:
Es siempre negativo, ya que en los tipos habituales de LENTE DIVERGENTE:
BICÓNCAVAS (R1 < 0, R2 > 0)
PLANOCÓNCAVAS (R1 = ¥ , R2 > 0 )
MENISCODIVERGENTES (R1 > 0, R2 > 0 y R1 > R2)
De la relación de los radios queda un término negativo, con lo que la distancia focal imagen (f’) será siempre negativa y el foco imagen se encontrará a la izquierda de la lente, con el trazado de rayos que se muestra a continuación y la imagen que se forma es VIRTUAL (cuando la imagen se forma al concurrir en un punto rayos que divergen):
Del mismo modo, podemos plantearnos el mismo razonamiento para el FOCO OBJETO. Se trataría de ver si existe un punto para cada lente en el que los rayos que partan de él y atraviesen la lente, nos devuelvan una imagen en el infinito. Según esto, veamos que ocurre que la distancia objeto (s) cuando establecemos la situación en la que la distancia imagen es igual a infinito (s’ = ∞):
Como se puede ver este valor de la distancia objeto (s), depende exclusivamente de la lente, con lo que es una distancia fija, es la DISTANCIA FOCAL OBJETO (f), a la que se encuentra este punto fijo, FOCO OBJETO (F), con lo que la ecuación que nos permite calcular esta distancia focal objeto:
Notar que tanto en la ecuación (F’) de la distancia focal imagen, como en la ecuación (F), de la distancia focal objeto, el segundo miembro es el mismo y que además coincide con el segundo miembro de la ECUACIÓN FUNDAMENTAL DE LAS LENTES DELGADAS:
Es por ello, por lo que podemos escribir una nueva ecuación:
Este es un buen momento para tener en cuenta que EN LAS LENTES, EL FOCO IMAGEN Y EL FOCO OBJETO TIENEN EN MISMO VALOR ABSOLUTO.
Si la lente es CONVERGENTE, el FOCO IMAGEN se encuentra a la DERECHA de la lente y EL FOCO OBJETO a la IZQUIERDA de la LENTE.
Si la lente es DIVERGENTE, el FOCO IMAGEN se encuentra a la IZQUIERDA de la lente y EL FOCO OBJETO a la DERECHA de la LENTE.
Concretamente, a la ecuación en la que figura sólo la distancia focal imagen:
Se le denomina ECUACIÓN DE LAS LENTES DELGADAS
POTENCIA DE UNA LENTE:
Se denomina potencia de una lente a la inversa de su distancia focal:
La unidad de la potencia es la dioptria que es igual al m-1, y como seguramente ya se ha notado es la unidad habitual para caracterizar las lentes, utilizada por ópticos y oftalmólogos.
Si la potencia es positiva, estamos en una lente CONVERGENTE y si es negativa en una lente DIVERGENTE.
Con lo que la ECUACIÓN DE LAS LENTES DELGADAS queda, en función de la POTENCIA:
CONSTRUCCIÓN DE IMÁGENES EN LENTES DELGADAS:
De todos los rayos que emite un punto objeto y que al atravesar una lente se refractan, hay tres cuya trayectoria se puede predecir, con lo que se puede formar fácilmente la imagen:
1.- Rayo que procedente del objeto llega paralelo al eje óptico, tras refractarse y atravesar la lente, pasa por el foco imagen.
2.- Rayos que pasan por el centro óptico de la lente no modifican la dirección en la que se propaga.
3.- Rayos que llevan la dirección del foco objeto, al atravesar la lente sigue una dirección paralela al eje óptico.
PODRÍA INTERESAR VISITAR LOS SIGUIENTES ARTÍCULOS RELACIONADOS CON LA ÓPTICA GEOMÉTRICA:
- ECUACIÓN FUNDAMENTAL DEL DIOPTRIO ESFÉRICO. Punto de partida del resto de las ecuaciones que se obtendrán: dioptrio plano, espejo plano, espejo esférico y lentes.
- CONVENIO DE SIGNOS EN ÓPTICA GEOMÉTRICA
- ECUACIÓN DEL DIOPTRIO PLANO
- FOCO OBJETO Y FOCO IMAGEN, FORMACIÓN DE IMÁGENES EN EL DIOPTRIO ESFÉRICO
- AUMENTO LATERAL EN EL DIOPTRIO ESFÉRICO, ESPEJOS ESFÉRICOS Y LENTES
- OBTENCIÓN DE LA ECUACIÓN DE HEMHOLTZ PARA EL DIOPTRIO ESFÉRICO
- AUMENTO LATERAL A TRAVÉS DE LA ECUACIÓN DE HEMHOLTZ
- AUMENTO ANGULAR EN EL DIOPTRIO ESFÉRICO, RELACIÓN CON AUMENTO LATERAL
- ECUACIÓN DEL ESPEJO ESFÉRICO, FOCOS EN EL ESPEJO ESFÉRICO
- ECUACIÓN DEL ESPEJO PLANO
- LENTES. ECUACIÓN FUNDAMENTAL DE LAS LENTES DELGADAS
- FOCOS Y DISTANCIAS FOCALES EN LAS LENTES. POTENCIA DE UNA LENTE. CONSTRUCCIÓN DE IMÁGENES EN LAS LENTES
- TIPOS DE LENTES habituales en ejercicios de óptica geométrica para Física de Bachillerato.
- Ejercicios de óptica geométrica, con las soluciones: EJERCICIOS ÓPTICA
- Ley de Snell de la Refracción y Refracción: LEY DE SNELL ÓPTICA Y ONDAS . Obtención de la expresión de la Ley de Snell.
- REFLEXIÓN TOTAL Y ÁNGULO LÍMITE . Aplicación de este fenómeno en la fibra óptica.
- VISIÓN DEL COLOR
- DISPERSIÓN DE LA LUZ EN EL PRISMA ÓPTICO
- ESPECTROSCOPÍA ÓPTICA
VOLVER A FÍSICA POR TEMAS
IR A QUÍMICA POR TEMAS
Artículos Recientes
QUÍMICA BÁSICA, TABLA PERIÓDICA, ESTRUCTURA DEL ÁTOMO, COMPUESTOS, VALENCIA
En esta entrada pretendemos dar las nociones básicas que nos acercan a la química: de la estructura del ÁTOMO, de su relación con la colocación en […]PROPUESTA DE CENTRO: C.P.E.S. NUESTRA SEÑORA DEL PILAR
NUESTRA SEÑORA DEL PILAR INSTITUTO «EL PILAR» CENTRO CONCERTADO EN SECUNDARIA (E.S.O.) Y BACHILLERATO, NUESTRA SEÑORA DEL PILAR («EL PILAR»): Información de interés para el […]APRENDIZAJE BASADO EN PROYECTOS
APRENDIZAJE BASADO EN PROYECTOS MATEMÁTICAS FÍSICA QUÍMICA BACHILLERATO APRENDIZAJE BASADO EN PROYECTOS EN MATEMÁTICAS, FÍSICA Y QUÍMICA DE BACHILLERATO: Proponemos la consulta del siguiente material del […]TRIGONOMETRÍA PARA SECUNDARIA Y BACHILLERATO
TRIGONOMETRÍA MATEMÁTICAS SECUNDARIA BACHILLERATO TRIGONOMETRÍA, RECURSOS PARA SECUNDARIA Y BACHILLERATO: ASPECTOS DE TRIGONOMETRÍA BÁSICA DE INTERÉS: LA SUMA DE LOS TRES ÁNGULOS DE UN TRIÁNGULO CUALQUIERA […]Método de Integración por Partes para Matemáticas de 2º de Bachillerato
MÉTODO INTEGRACIÓN POR PARTES MÉTODO DE INTEGRACIÓN POR PARTES DE RESOLUCIÓN DE INTEGRALES: Se usa la fórmula: Que se puede recordar fácilmente usando la […]GUÍA BÁSICA LOMLOE PARA DOCENTES DE MATEMÁTICAS, FÍSICA Y QUÍMICA
LOMLOE MATEMÁTICAS FÍSICA QUÍMICA SECUNDARIA Y BACHILLERATO EJEMPLOS DE SITUACIONES APRENDIZAJE DOCUMENTADAS CONSIDERACIONES BÁSICAS DE LA LOMLOE, QUE PUEDEN AYUDAR A LOS DOCENTES QUE NOS ENFRENTAMOS […]DE INTERÉS PARA DOCENTES DE CIENCIAS
PROFESORES DOCENTES CIENCIAS EDUCACIÓN CUESTIONES DE INTERÉS PARA LOS DOCENTES DE CIENCIAS Vivimos en educación un momento complicado: Leyes educativas en constante modificación, teóricos de la […]

