1. VALENCIA.

Es la capacidad que tiene un átomo de un elemento para combinarse con los átomos de otros elementos y formar compuestos. Los gases nobles, que no se combinan no tienen valencia, su valencia es cero.

La valencia es un número, positivo o negativo, que nos indica el número de electrones que gana, pierde o comparte un átomo con otro átomo o átomos.

2. VALENCIAS más usuales DE LOS ELEMENTOS MÁS IMPORTANTES DEL SISTEMA PERIÓDICO.

	1	2	6	7	8	9	10	11	12	13	14	15	16	17
1	Н													
	+1,- 1													
2	Li	Ве								В	С	N***	0	F
	+1	+2								+3	+2,+4	+1 +3	-2	-1
											1 4 34	+5 -3		
_											±4*			01
3	Na	Mg								Al	Si	Р	S	CI
	+1	+2								+3	+4	+1,+3,+5	+2,+4	+1,+3
											±4	±3	+6 -2	+5,+7 -1
4	K	Ca	Cr**	Mn**	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
	+1	+2	+2+3	+2,+3	+2,+3	+2,+3	+2,+3	+1,+2	+2	+3	+2,+4	+1,+3,+5	+2,+4	+1,+3
				. 4 . 6 . 7									+6	+5,+7
		_	+6	+4+6,+7				_		_		±3	-2	-1
5	Rb	Sr					Pd	Ag	Cd	In	Sn	Sb	Te	
	+1	+2					+2,+3	+1	+2	+3	+2,+4	+1,+3,+5	+2,+4	+1,+3
							+4					+3	+6 -2	+5,+7 -1
6	Cs	Ва				lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At
	+1	+2				+2,+4	+2,+4	+1,+3	+1,+2	+1,+3	+2,+4	+3,+5	+2,+4	+1,+3
													<u> </u>	+5,+7
												+3	+2	-1
7	Fr	Ra										n recuadro cuar		
	+1	+2	con el oxigeno (p.e.cuando forman hidruros, o sales tipo -uro)											

Como metales: Cr: +2,+3; Mn:+2,+3 Como no metales: Cr: +6; Mn:+4,+6,+7

^{**}El cromo y el manganeso se pueden comportar como metales y como no metales:

^{***} El nitrógeno también forma óxidos con 2 y 4, (nitroso y nítrico)(pág.5)

CUADERNILLO FORMULACIÓN INORGÁNICA V30

3. NOMENCLATURAS.

Para nombrar los compuestos químicos inorgánicos se siguen las normas de la IUPAC (unión internacional de química pura y aplicada). Se incluyen aquí los tipos más usados en la actualidad en cada caso.

3.1. NOMENCLATURA DE COMPOSICIÓN:

3.1.1.DE COMPOSICIÓN ESTEQUIOMÉTRICA (NOMBRES ESTEQUIOMÉTRICOS): (ANTES SISTEMÁTICA)

Sólo proporciona información sobre la composición. No proporciona información sobre la estructura de la molécula.

Para nombrar compuestos químicos según esta nomenclatura se utilizan los prefijos multiplicadores: MONO_, DI_, TRI_, TETRA_, PENTA_, HEXA_, HEPTA_ ...

EJEMPLOS:

Cl₂O₃ Trióxido de dicloro

I₂O Monóxido de diiodo

Li H (mono) hidruro de litio

Respecto al prefijo mono: Si no hay posibilidades de duda el prefijo "mono" se omite. Dicen los textos al respecto: "el prefijo mono no suele utilizarse salvo que su ausencia conduzca a confusiones

Óxido de diplata = Aq₂O

Trióxido de dialuminio = Al₂O₃

Óxido de dicobre = Cu_2O (El cobre tiene estado de oxidación (+1))

Óxido de monocobre = CuO (El cobre tiene estado de oxidación (+2))

SE INCLUYEN DENTRO DE ESTE TIPO DE NOMENCLATURAS DE COMPOSICIÓN:

3.1.2.DE COMPOSICIÓN DE NÚMERO DE OXIDACIÓN (NOS REFERIREMOS A ELLA POR STOCK, QUE ES COMO SE LA CONOCÍA ANTES)

3.1.3. DE COMPOSICIÓN DE NÚMERO DE CARGA; SE LE CONOCE TAMBIEN POR EL NOMBRE DE MÉTODO EWENS-BASSETT

Se recomienda poner en esta nomenclatura la carga aún cuando no exista ambigüedad.

EJEMPLO:

Fórmula	COMPOSICIÓN ESTEQUIOMÉTRICA	COMPOSICIÓN N° DE OXIDACIÓN STOCK	COMPOSICIÓN N° DE CARGA EWENS-BASSETT	TRADICIONAL
CoCl ₂	Dicloruro de cobalto	Cloruro de cobalto (II)	Cloruro de cobalto(2+)	Cloruro cobaltoso

CUADERNILLO FORMULACIÓN INORGÁNICA V30

3.2. NOMENCLATURA DE STOCK.(-SISTEMÁTICA FUNCIONAL-) (EN ALGUNOS TEXTOS DE COMPOSICIÓN DEL NÚMERO DE OXIDACIÓN escrito en números romanos)

En este tipo de nomenclatura, cuando el elemento que forma el compuesto tiene más de una valencia, ésta se indica al final, en números romanos y entre paréntesis:

Fe(OH)₂ Hidróxido de hierro (II) Fe(OH)₃ Hidróxido de hierro (III)

3.3. NOMENCLATURA DE HIDRÓGENO:

Para los compuestos o iones que contienen hidrógeno; (hidrógeno escrita sin tilde)

EJEMPLOS:

H₂S dihidrogeno(sulfuro)

HMnO₄ hidrogeno(tetraoxidomanganato) H₂Cr₂O₇ dihidrogeno(heptaoxidodicromato)

3.4. NOMENCLATURA TRADICIONAL.

En esta nomenclatura para poder distinguir con qué valencia funcionan los elementos en ese compuesto se utilizan una serie de prefijos y sufijos:

3.5. NOMENCLATURA DE ADICIÓN:

TENIENDO EN CUENTA LOS GRUPOS -OH Y LOS GRUPOS -O, PARA EL CASO DE LOS ÁCIDOS OXOÁCIDOS

Se nombran primero los grupos hidróxidos, luego los óxidos y finalmente el átomo central:

H₃PO₄, trihidroxidooxidofosforo

(como si tuviera 3 grupos hidróxido completos -trihidroxido-, 1 grupo oxigeno -oxido)

H₂CO₃, dihidroxidooxidocarbono

(como si tuviera 2 grupos hidróxido completos -trihidroxido-, 1 grupo oxigeno -oxido)

CUADERNILLO FORMULACIÓN INORGÁNICA V30

EJEMPLOS DE FORMULACIÓN DE DETERMINADAS ESPECIES QUÍMICAS INORGÁNICAS:

En cada caso se proponen las nomenclaturas más usuales.

ESPECIES HOMOATÓMICAS:

Formados únicamente por átomos de un elemento.

Fórmula	N. COMPOSICIÓN ESTEQUIOMÉTRICA	N. tradicional
O ₂	dioxígeno	oxígeno
<i>O</i> ₃	Trioxígeno	ozono
H ₂	dihidrógeno	Hidrógeno
P ₄	tetrafósforo	Fósforo blanco
P ₄	Dióxido(2-)	peróxido
S ₆	hexaazufre	azufre
Ag	plata	plata
Н	monohidrógeno	hidrógeno atómico
N ₂	dinitrógeno	nitrógeno

4. ÓXIDOS.

Son compuestos binarios formados por la combinación de un elemento y oxígeno. Hay dos clases de óxidos que son los óxidos básicos y los óxidos ácidos (anhídridos).

4.1. ÓXIDOS BÁSICOS.

Son compuestos binarios formados por la combinación de un metal y el oxígeno. Su fórmula general es:

M_2O_X

Donde M es un metal y X la valencia del metal (el 2 corresponde a la valencia del oxígeno).

LAS VALENCIAS DE LOS ELEMENTOS SE INTERCAMBIAN ENTRE ELLOS Y SE PONEN COMO SUBÍNDICES. (Si la valencia es par se simplifica). El subíndice como consecuencia de ello indica el número de átomos que forman parte del compuesto.

Valencia	Fórmula	N. COMPOSICIÓN	N. stock (de los n ^{os} de oxidación)	N. tradicional	N. Ewens-Basset (de los nºs de carga)
1	Na ₂ O	Monóxido de disodio	Óxido de sodio	Óxido de sodio	Óxido de sodio(1+)
2	$Ca_2O_2 = CaO$				
	Fe ₂ O ₂ = FeO			Óxido ferroso	Óxido de hierro(2+)
3	Fe ₂ O ₃		Óxido de hierro (III)		
4	$Pb_2O_4 = PbO_2$	Dióxido de plomo			
			Óxido de cesio		

CUADERNILLO FORMULACIÓN INORGÁNICA V30

Los prefijos pueden omitirse cuando sólo se puede formar un óxido de ese elemento:

K₂O→óxido de dipotasio; también válido óxido de potasio.

CaO→monóxido de calcio; óxido de calcio.

Hay autores que siempre omiten el prefijo mono; otros que no les gusta omitir el prefijo mono cuando está delante de óxido.

4.2. ÓXIDOS ÁCIDOS O ANHÍDRIDOS.

Son compuestos binarios formados por un no metal y oxígeno. Su fórmula general es: N_2O_X Donde N es un no metal y la X la valencia del no metal (el 2 corresponde a la valencia del oxígeno). LAS VALENCIAS DE LOS ELEMENTOS SE INTERCAMBIAN ENTRE ELLOS Y SE PONEN COMO SUBÍNDICES. (Si la valencia es par se simplifica).

LA PALABRA ANHÍDRIDO SÓLO SE USAN EN NOMENCLATURA TRADICIONAL.

Valencia	Fórmula	N. COMPOSICIÓN O ESTEQUIOMETRICA	N. stock (de los n ^{os} de oxidación)	N. tradicional	N. Ewens-Basset (de los n ^{os} de carga)
	F ₂ O	Monóxido de diflúor	Óxido de flúor	Anhídrido	
				hipofluoroso	
				(excepción a la norma	
1				general de prefijos y sufijos)	
	Cl₂O			,	
2	50	Monóxido de (mono)azufre	Óxido de azufre (II)	Anhídrido	
				hiposulfuroso	
				Anhídrido clórico	
3	I_2O_3	Trióxido de diodo			Óxido de iodo(3+)
4	SeO ₂			Anhídrido	
				selenioso	
5	Br_2O_5				
6	<i>SO</i> ₃			Anhídrido	
				sulfúrico	
7	I_2O_7	Heptaóxido de diyodo	Óxido de Yodo		
		·	(VII)		
	Br ₂ O				
	N₂O	Monóxido de dinitrógeno			
	NO ₂	_	Óxido de nitrógeno(IV)		

La nomenclatura tradicional de los óxidos de nitrógeno debe ser mencionada aparte.

Valencia	Fórmula	N. sistemática	N. stock	N. tradicional
2	NO			Óxido nitroso
4	NO ₂			Óxido nítrico
3	N ₂ O ₃			Anhídrido nitroso
5	N _o O ₅			Anhídrido nítrico

CUADERNILLO FORMULACIÓN INORGÁNICA V30

5. HIDRUROS METÁLICOS:

Son compuestos binarios formados por un metal e Hidrógeno. Su fórmula general es: MH_X Donde M es un metal y la X la valencia del metal. EL HIDRÓGENO SIEMPRE TIENE VALENCIA 1.

Valencia	Fórmula	N. COMPOSICIÓN O ESTEQUIOMÉTRICA	N. stock (de los n ^{os} de oxidación) (la más frecuente)	N.Composición (del nº de carga) MÉTODO EWENS- BASSETT	N. tradicional
1	NaH	Monohidruro de sodio			Hidruro sódico
2		Dihidruro de hierro	Hidruro de hierro	hidruro de	
			(II)	hierro(2+)	
3		Trihidruro de hierro		hidruro de	Hidruro férrico
				hierro(3+)	
4	SnH₄	Tetrahidruro de estaño	Hidruro estaño (IV)		

6. HIDRUROS DE NO METALES (grupos 13 a 17):

6.1. Distinguir los de los grupos 13,14,15:

Hay no metales como el nitrógeno, fósforo, arsénico antimonio, carbono, silicio y boro que forman compuestos con el hidrógeno y que reciben nombres especiales.

Nitrógeno, fósforo, arsénico, antimonio y el boro funcionan con la valencia 3 mientras que el carbono y el silicio lo hacen con valencia 4.

٧	Fórmula	N. COMPOSICIÓN	N. HIDRÓGENO	N. tradicional NOMBRES PROGENITORES
3	NH ₃	Trihidruro de nitrógeno	trihidrogeno(nitruro)	amoniaco
3	PH ₃			fosfano
3	AsH ₃			arsano
3	BH ₃			borano
3	SbH₃			estibano

4	SiH ₄		silano
4	CH ₄	tetrahidrogeno(carburo)	metano

6.2. Grupos 16 y 17 ÁCIDOS HIDRÁCIDOS, ya que tienen carácter ácido:

Son compuestos binarios formados por un no metal de los grupos 16 y 17 con el hidrógeno. Los no metales que forman estos ácidos son los siguientes:

Fluor, cloro, bromo, yodo (todos ellos funcionan con la valencia 1) Azufre, selenio, teluro (funcionan con la valencia 2).

CUADERNILLO FORMULACIÓN INORGÁNICA V30

Su fórmula general es: H_xN ; Donde N es el no metal y la X la valencia del no metal. (El H funciona con valencia 1).

٧	Fórm	N. COMPOSICIÓN	N. HIDRÓGENO	N. tradicional (en disolución)	N. tradicional (estado puro)
1	HF	Fluoruro de hidrógeno	hidrogeno(fluoruro)	Ácido fluohídrico	Fluoruro de hidrógeno
1	HCl	Cloruro de hidrógeno		Ácido clorhídrico	Cloruro de hidrógeno
1	HBr				
1	HI		hidrogeno(yoduro)		
2	H₂S	Sulfuro de	dihidrogeno(sulfuro)	Ácido sulfhídrico	Sulfuro de hidrógeno
		dihidrógeno			
2	H₂Se				Seleniuro de hidrógeno
2	H ₂ Te			Ácido telurhídrico	

Es importante conocer, que cuando decimos ácido clorhídrico, nos referimos al cloruro de hidrógeno, pero cuando está en disolución; lo mismo con los otros ácidos hidrácidos (hidruros con los no metales del grupo 16 y 17). Así podemos decir cloruro de hidrógeno al HCl en forma gaseosa HCl(g) y ácido clorhídrico al HCl(aq); del mismo modo, sulfuro de hidrógeno, $H_2S(g)$ y ácido sulfhídrico $H_2S(aq)$.

Notar que en los hidruros metálicos y en los hidruros de los no metales de los grupos 13,14,15 del S.P. el hidrógeno se pone al final, y en el caso de los del grupo 16 y 17 el hidrógeno al principio.

8. HIDRÓXIDOS.

Son compuestos formados por un metal y el grupo hidroxilo (OH^-). Su fórmula general es: $M(OH)_X$ Donde M es un metal y la X la valencia del metal. EL GRUPO -OH SIEMPRE TIENE VALENCIA -1; el catión positiva según valencia.

V	Fórmula	N. COMPOSICIÓN ESTEQUIOMÉTRICA	N. STOCK, o DEL N° DE OXIDACIÓN	N. COMPOSIC. DEL N° DE CARGA	N. tradicional
1	NaOH	hidróxido de sodio	hidróxido de sodio		hidróxido sódico
					hidróxido de sodio
2	Ca(OH) ₂				hidróxido cálcico
					hidróxido de calcio
2	Ni (OH)₂	dihidróxido de níquel	hidróxido de níquel	Hidróxido de	hidróxido niqueloso
			(II)	níquel(2+)	
3	Al(OH)₃		hidróxido de aluminio		hidróxido alumínico
	Pb(OH) ₂				
				Hidróxido de	
				cobalto(3+)	

CUADERNILLO FORMULACIÓN INORGÁNICA V30

9. ÁCIDOS OXÁCIDOS.

Son compuestos ternarios formados por un no metal, oxígeno e hidrógeno. Se obtienen a partir del óxido ácido o anhídrido correspondiente sumándole una molécula de agua (H_2O) .

Su fórmula general es: $H_2O + N_2O_x = H_aN_bO_c$ Donde H es el hidrógeno, N el no metal y O el oxígeno.

٧	Fórmula	N. Sistemática (en desuso)	N de adición (**)	N. DE HIDRÓGENO	Tradicional
1	$F_2O + H_2O$ = $H_2F_2O_2$ = HFO	Oxofluorato (I) de hidrógeno	hidroxidofluor	hidrogeno(oxidofluorato)	Ácido hipofluoroso (*)
2	50 + H ₂ O = H ₂ SO ₂	Dioxosulfato (II) de hidrógeno	dihidroxidoazufre	dihidrogeno(dioxidosulfato)	Ácido hiposulfuroso
3	$Cl_2O_3 + H_2O = H_2Cl_2O_4 = HCIO_2$		Hidroxidooxidocloro		Ácido cloroso
4	50 ₂ + H ₂ O = H₂SO₃				Ácido sulfuroso
5	Br ₂ O ₅ + H ₂ O = H ₂ Br ₂ O ₆ = HBrO ₃		hidroxidodioxidobromo		Ácido brómico
6	50 ₃ + H ₂ O = H₂SO₄			dihidrogeno(tetraoxidosulfato)	Ácido sulfúrico
7	$Cl_2O_7 + H_2O = H_2Cl_2O_8 = HClO_4$		hidroxidotrioxidocloro		Ácido perclórico
				dihidrogeno(heptaoxidodicromato)	
	HBrO		hidroxidobromo		
			hidroxidodioxidonitrogeno		

^(*) Notar que a pesar del flúor tener una única valencia, se nombra hipofluoroso, por asimilación al resto del grupo.

(**) Se nombran primero los grupos hidróxidos, luego los óxidos y finalmente el átomo central.

٧	Fórmula	N. Sistemática	N. DE HIDRÓGENO	N. tradicional
2	CO+H ₂ O=			Ácido carbon
4	CO ₂ +H ₂ O=			Ácido carbon

El nitrógeno sólo forma ácidos oxácidos con la valencias 3 y 5.

٧	Fórmula	N. Sistemática	N. DE HIDRÓGENO	N. tradicional
3				Ácido nitroso
5				Ácido nítrico

CUADERNILLO FORMULACIÓN INORGÁNICA V30

El fósforo, arsénico y antimonio (elementos "sedientos") forman ácidos especiales, ácidos polihidratados:

Si a los óxidos correspondientes se les suma una molécula de aqua tenemos los ácidos META:

٧	Fórmula	N. Sistemática	N. DE HIDRÓGENO	N. tradicional
3	$P_2O_3 + H_2O = HPO_2$			Ácido metafosforoso
5	$P_2O_5 + H_2O = HPO_3$			Ácido metafosfórico

Si se les unen dos moléculas de agua se obtienen los ácidos PIRO:

>	Fórmula	N. Sistemática	N. DE HIDRÓGENO	N. tradicional
3	$P_2O_3 + 2H_2O =$			Ácido pirofosforoso
	H ₄ P ₂ O ₅			,
5	$P_2O_5 + 2H_2O =$	Heptaoxodifosfato		Ácido pirofosforico
	H ₄ P ₂ O ₇	(V) de hidrógeno.		·

El fósforo, arsénico y antimonio forman los ácidos **ORTO** cuando se les suman 3 moléculas de agua a los óxidos correspondientes.

V	Fórmula	N. Sistemática	N. DE HIDRÓGENO	N. tradicional
3	P ₂ O ₃ + 3H ₂ O = H ₆ P ₂ O ₆			Ácido ortofosforoso
	= H ₃ PO ₃			(A. Fosforoso)
5	P ₂ O ₅ +3H ₂ O = H ₆ P ₂ O ₈ =			Ácido ortofosfórico
	H₃PO ₄			(A. Fosfórico)

También se ve el ortobórico, e incluso el ortoperyódico, aunque no es lo habitual.

^{*}El cromo y el manganeso cuando actúan como no metales también forman ácidos:

Valencia	Fórmula	N. tradicional
6	$CrO_3 + H_2O = H_2CrO_4$	Ácido crómico
6	$(**)2 CrO_3 + H_2O = H_2Cr_2O_7$	Ácido dicrómico

(**) El dicrómico se forma con 2 CrO₃

Valencia	Fórmula	N. tradicional
6	$MnO_3 + H_2O = H_2MnO_4$	Ácido mangánico
7	$Mn_2O_7 + H_2O = H_2Mn2O_8 = HMnO_4$	Ácido permangánico
4	H ₂ MnO ₃	Ácido manganoso

Notar que en tradicional, el **manganeso** que tiene valencia para ácidos (4,6,7) no utiliza el hiposo, oso, ico; sino el oso, ico, perico, que no es lo habitual.

CUADERNILLO FORMULACIÓN INORGÁNICA V30

OBTENCIÓN DE LA VALENCIA DE UN ELEMENTO DE UN COMPUESTO:

La manera de **extraer la valencia en el ácido** si nos dan la fórmula y tenemos que nombrarla:

+2 +6 -8 +1 ć? -2 H₂ S O₄

El hidrógeno siempre con valencia +1, y el oxígeno con -2 en los oxoácidos y el del elemento central se encuentra teniendo en cuenta que el total del compuesto es cero. (+6 en el caso del ejemplo).

Una forma rápida de Identificar las valencias es el siguiente cuadro, donde prácticamente están todos los oxácidos, aunque hay que memorizarlo:

Valencias→	1,3,5,7	2,4,6	1,3,5	1,3,5	1,3,5	2,4
		•		_		
Hipooso	H Cl O	$H_2 S O_2$	HPO	$H_4 P_2 O_3$	$H_3 P O_2$	
oso	$HClO_2$	$H_2 S O_3$	HPO_2	$H_4P_2O_5$	$H_3 P O_3$	$H_2 C O_2$
ico	$HClO_3$	$H_2 S O_4$	HPO_3	$H_4 P_2 O_7$	$H_3 P O_4$	$H_2 C O_3$
Perico	$HClO_4$					
			${f N}$			
Elementos→	F,Cl,Br,I,At	S,Se,Te,Po		P,As,Sb,Bi		C,Si
			Meta	Piro	(orto)*	

^{*}Se puede y se suele omitir el prefijo orto.

Hay varias Excepciones y no todas aceptadas por todo el mundo:

- El Boro forma el Ácido Ortobórico (bórico) (con valencia 3) → H₃ B O₃
- El anhídrido y el ácido en tradicional que forma el F que sólo tiene valencia 1, se nombra como hipofluoroso.

10. SALES DE ÁCIDOS HIDRÁCIDOS. (SALES BINARIAS)

Se obtienen sustituyendo los hidrógenos del ácido hidrácido (hidrógeno con no metales del grupo 16 y 17) correspondiente por un metal.

Se nombran con el nombre del no metal terminado en -uro seguido del nombre del metal. Si el metal tiene más de una valencia se indica al final, en números romanos y entre paréntesis.

El número de hidrógenos que se le quitan al ácido se le pone como subíndice al metal.

Ácido Hidrácido	Fórmula	N.COMPOSICIÓN	N. STOCK	N. nº de carga	N. tradicional
HF	CaF ₂	Difluoruro de calcio	fluoruro de calcio		fluoruro cálcico
HCI	FeCl ₃		cloruro de hierro (III)	cloruro de hierro(3+)	cloruro férrico
HBr			bromuro de cadmio		
HI			yoduro de cromo (II)		
H ₂ S	Pt ₂ S ₄ = PtS ₂	Disulfuro de platino	sulfuro de platino (IV)		
H₂Se	Al ₂ Se ₃				
H ₂ Te					telururo aúrico
		Yoduro de oro			
HCl	CuCl ₂			cloruro de cobre(2+)	

CUADERNILLO FORMULACIÓN INORGÁNICA V30

11. SALES DE ÁCIDOS OXÁCIDOS, OXOSALES:

Son compuestos ternarios formados por un metal, un no metal y el oxígeno. Se obtienen a partir de los ácidos oxácidos sustituyendo los hidrógenos de éstos por un metal. Vamos a estudiar dos tipos de sales de ácidos oxácidos, las sales neutras y las sales ácidas.

11.1. Sales neutras.

Se obtienen sustituyendo todos los hidrógenos de un ácido oxácido por un metal.

La valencia del metal se le pone como subíndice al resto del ácido sin los hidrógenos. El número de hidrógenos que se le quiten al ácido se le ponen como subíndice al metal.

Se nombran sustituyendo los sufijos que utilizábamos en el ácido (-oso e -ico) por los sufijos -ito y -ato respectivamente.

Prefijos y sufijos utilizados en los ácidos		Prefijos	y sufijos utilizados en las sales	
HIPO-	-050	HIPO-	-ITO	
	-050		-ITO	
	-ICO		-ATO	
PER-	-I <i>CO</i>	PER-	-ATO	
Puede ayudarte a recordar la equivalencia de sufijos la siguiente frase:				
Cuando el	OSO toca el pITO, perICO toco	a el silbÀ7	ГО.	

EJEMPLOS EN NOMENCLATURA TRADICIONAL, DE LA SAL Y SU ÁCIDO DE PARTIDA:

Ácido de partida	Nombre del ácido	Sal	Nombre de la sal
	(tradicional)		(tradicional)
HCIO	Ácido hipocloroso	Ca(ClO) ₂	Hipoclorito de calcio
HClO ₂	Ácido cloroso	Ca(ClO ₂) ₂	Clorito de calcio
HClO ₃	Ácido clórico	Sn(ClO ₃) ₄	Clorato de estannico
HClO ₄	Ácido perclórico	Li(ClO ₄)	Perclorato de litio
H ₂ SO ₂	Ácido hiposulfuroso	$Ca_2(SO_2)_2 = Ca(SO_2)$	Hiposulfito de calcio
H ₂ SO ₃		$Pb_2(SO_3)_4 = Pb(SO_3)_2$	Sulfito plúmbico
H ₂ SO ₄		Al ₂ (SO ₄) ₃	Sulfato de aluminio
H ₄ P ₂ O ₇	Ácido pirofosfórico	Fe ₄ (P ₂ O ₇) ₃	Pirofosfato férrico
H ₃ AsO ₃	Ácido ortoarsenioso	K ₃ (AsO ₃)	Ortoarsenito de potasio

CUADERNILLO FORMULACIÓN INORGÁNICA V30

EJEMPLOS DE SALES OXOÁCIDAS EN LAS DIFERENTES NOMENCLATURAS:

Sal	N.COMPOSICIÓN	Tradicional	N. DE ADICIÓN (*)
FeSO ₄	tetraoxidosulfato de hierro	Sulfato Ferroso	Tetraoxidosulfato(2-) de hierro(2+)
NaClO			oxidoclorato(1-) de sodio
Al ₂ (5O ₃) ₃	Tris(trioxidosulfato) de dialuminio	Sulfito de Aluminio	
Fe ₂ (SO ₄) ₃			Tetraoxidosulfato(2-) de hierro(3+)
Co(NO ₃) ₃	Tris(trioxidonitrato) de cobalto		
$Cu(MnO_4)_2$		Permanganato cúprico	
Na ₂ SO ₃	trioxidosulfato de disodio		
$(NH_4)_2SiO_3$			
KClO ₂			
NiBO ₃	Trioxidoborato de niquel		
CaSO ₄			
K ₂ Cr ₂ O ₇		Dicromato de potasio	Heptaoxidodicromato(2-) de potasio
		cromato de sodio	
Sn(ClO) ₄	Tetrakis(oxidoclorato) de estaño		Oxidoclorato(1-) de estaño(4+)
K ₃ AsO ₃			
Fe ₄ (P ₂ O ₇) ₃			
	Dioxidotelurato de dicobre		
	Tetraoxidomanganato de dilitio		

(*) NOMENCLATURA DE ADICIÓN DE OXOSALES: Se nombra el anión - no el elemento central - (con su carga) y tras la palabra "de", el catión con su número de carga (si hubiera que distinguirla). El anión en este caso siempre es con -ato:

KIO (hipoyodito de potasio): anión es IO-, catión es K+; en consecuencia, óxidoyodato(1-) de potasio

La manera de obtener la valencia de los elementos, si nos dan la fórmula, es la misma que con el ejemplo de los ácidos: el Oxígeno (-2) y de la fórmula se extrae la valencia del elemento sustituído por el hidrógeno.

11.2. Sales ácidas.

Son compuestos que se obtienen sustituyendo **PARTE DE LOS HIDRÓGENOS** de un ácido oxácido por un metal.

Se nombran con la palabra hidrógeno precedida de los prefijos di- (H_2) , tri- (H_3) seguido del nombre de la sal correspondiente.

Puede ayudar a nombrar este tipo de sales consultar la nomenclatura de los iones, al final de este cuadernillo.

(Cuando se sustituyen la mitad de los hidrógenos, en ocasiones se antepone el prefijo bi -bicarbonato-)

CUADERNILLO FORMULACIÓN INORGÁNICA V30

Se antepone al nombre de la sal neutra, di-, tri-, y la palabra HIDRÓGENO, según el número de de hidrógenos que quedan <u>sin sustituir</u>.

Ácido de partida	Nombre del ácido	Sal	N. TRADICIONAL
H ₂ SO ₂	Ácido hiposulfuroso	Ca(HSO ₂) ₂	hidrogenohiposulfito de calcio
H ₂ SO ₃	Ácido sulfuroso	Pb(HSO ₃) ₄	hidrogenosulfito de plomo(IV)
		Fe(HSO ₃) ₂	Hidrogenosulfito de hierro(II)
		KH5O ₃	hidrogenosulfito de potasio
H ₂ SO ₄	Ácido sulfúrico	Cr(HSO ₄) ₃	hidrogenosulfato de cromo (III) BISULFATO CRÓMICO
H ₄ As ₂ O ₅	Ácido piroarsenioso	Sr(H ₃ As ₂ O ₅) ₂	Trihidrogeno piroarsenito de estroncio
H ₄ Sb ₂ O ₅	Ácido piroantimonioso	$Mg_2(H_2Sb_2O_5)_2 = Mg(H_2Sb_2O_5)$	Dihidrogeno piroantimonito de Magnesio
		NaHCO ₃	Hidrogenocarbonato de sodio
		CaHPO ₄	Hidrogenofosfato de calcio
			Hidrogeno (orto)fosfito de magnesio
			Hidrogeno trioxosulfato (IV) de sodio
			Dihidrogenofosfato de cobre (II)
		H ₂ KAsO ₄	Hidrogeno (orto) arseniato de potasio. Di hidrogeno tetraoxoarseniato (V) de potasio
		HKSO₄	Bisulfato de potasio

Sal	N. TRADICIONAL	N.COMPOSICIÓN	N. ADICIÓN
Pb(HSO ₃) ₄	hidrogenosulfito de plomo(IV)	tetrakis[hidrogeno(trioxidosulfato)] de plomo	
Fe(HSO ₃) ₂	Hidrogenosulfito de hierro(II)	bis[hidrogeno(trioxidosulfato)] de hierro	Hidroxidodioxidosulfato(1-) de hierro(2+)
Fe(HSO ₄) ₂			Hidroxidotrioxidosulfato(1-) de hierro(2+)
KHSO₃	hidrogenosulfito de potasio		
Cr(HSO ₄) ₃	hidrogenosulfato de cromo (III) BISULFATO CRÓMICO	tris[hidrogeno(tetraoxidosulfato)] de cromo	
NaHCO ₃	Hidrogenocarbonato de sodio	hidrogeno(trioxidocarbonato) de sodio	Hidroxidodioxidocarbonato(1-) de sodio
CaHPO₄	Hidrogenofosfato de calcio	hidrogeno(tetraoxidofosfato) de calcio	
	Hidrogeno trioxosulfato de sodio		
	Dihidrogenofosfato de cobre (II)		
HKSO₄	Bisulfato de potasio		
LiHCO ₃			Hidroxidodioxidocarbonato(1-) de litio
Fe(H ₂ PO ₃) ₃			Dihidroxidooxidofosfato(1-) de hierro(3+)

CUADERNILLO FORMULACIÓN INORGÁNICA V30

12. PERÓXIDOS.

Se caracterizan por llevar el grupo PEROXO (- O - O -) también representado O_2^{2-} ; dióxido(2-) cuando utilizamos la nomenclatura de composición del número de carga.

Los podemos considerar como óxidos con más oxígeno del que corresponde por la valencia de este elemento.

Fórmula general: $X_2(O_2)_n$ (donde n es la valencia del elemento X) (no se simplifica el 2 de debajo del oxígeno)

v	Fórmula	N COMPOSICIÓN	stock	N. Composic, del n° de carga. MÉTODO EWENS- BASSETT	TRADICIONAL
1	H ₂ O ₂		peróxido de hidrógeno		Peróxido de hidrógeno = Agua oxigenada
1	Na ₂ O ₂	dióxido de disodio			
1	(*) N ₂ O ₂	Dióxido de dinitrógeno	peróxido de nitrógeno (I)		
2	Ca ₂ O ₄ = CaO ₂				
2	Ba ₂ O ₄ =BaO ₂	Dióxido de Bario			
					Peróxido de litio
2	FeO ₂	Dióxido de Hierro	peróxido de Hierro (II)		Peróxido ferroso
2	CuO ₂		peróxido de cobre(II)	dióxido(2-)de cobre(2+)	
3	Fe ₂ O ₆				Peróxido férrico

^(*) Notar que es de los pocos casos que el nitrógeno tiene valencia (I), y en tradicional se nos acaban los prefijos. (también se llama protóxido de nitrógeno y es el gas de la risa (hilarante))

CUADERNILLO FORMULACIÓN INORGÁNICA V30

13. IONES:

Notar como se nombran basándonos en la sal de la que provienen por disociación de la misma:

Acido de partida	IÓN	TRADICIONAL	ADICIÓN (grupos hidróxido + óxido, todos -ato, carga del ión)	N. DE HIDRÓGENO (para los que contengan hidrógeno)
H ₃ PO ₄	H ₂ PO ₄ -	Ión dihidrogenofosfato	dihidroxidodioxidofosfato(1-)	dihidrogeno (tetraoxidofosfato)(1-)
H₃PO₄	HPO ₄ ²⁻	Ion hidrogenofosfato	Hidroxidotrioxidofosfato(2-)	hidrogeno (tetraoxidofosfato)(1-)
H₃PO₄	PO ₄ ³⁻	Ión fosfato		
HNO ₃	NO ₃ -		Trioxidonitrato(1-)	
H ₂ 5O ₄	5O ₄ ⁼	Ión sulfato	Tetraoxidosulfato(2-)	
H ₂ SO ₄	H50 ₄ -	Ión hidrogenosulfato (bisulfato)	Hidroxidotrioxidosulfato(1-)	hidrogeno (tetraoxidosulfato)(1-)
H ₂ SO ₃	HSO₃⁻	Ion hidrogenosulfito		Hidrogeno (trioxidosulfato)(1-)
H ₂ SO ₃	50 ₃ ^{2.}	Ion sulfito		
H₂CO ₃	HCO ₃ -	Ion hidrogenocarbonato		hidrogeno (trioxidocarbonato) (1-)
H ₂ CO ₃	CO ₃ ²⁻	Ion carbonato		
	K⁺	Catión potasio		
	Fe ³⁺	Catión férrico	hierro (3+)	
	CIO ₄	perclorato		
		Ión clorito		
	I-	Ión ioduro		
HCl		Ión cloruro		
	$\mathrm{NH_4}^{\scriptscriptstyle +}$	Ión amonio		
	H₃O⁺	Ión hidronio		
	H⁺	Catión Hidrógeno Protón		