www.matematicasfisicaquimica.com

Movimiento Circular Uniforme: MCU

MOVIMIENTO CIRCULAR UNIFORME:

Es el movimiento que se desarrolla a lo largo de una circunferencia y que tiene velocidad constante (en módulo, ya que al ser circular la velocidad varía en dirección).

 Si imaginamos un tiovivo y nos situamos en varios “caballitos”, vemos que dependiendo de lo cerca o lo lejos que estemos del centro, del eje de giro, nuestra velocidad será diferente, ya que en el mismo tiempo, cuanto más alejados estemos del centro del tiovivo, recorreremos más espacio. Como la velocidad v=e/t, cuanto más espacio recorremos, mayor será la velocidad.

Es por ello, por lo que la velocidad v=e/t no es la adecuada para caracterizar el movimiento circular, ya que dependiendo de la distancia al eje de giro, esta magnitud será diferente.

Sin embargo, el ángulo girado por cada “caballito” es el mismo para un mismo tiempo (independientemente de lo cerca o lejos que esté del centro).

Para los movimientos circulares se define w (velocidad angular) como el ángulo (φ) girado en la unidad de tiempo:

 

Este ángulo se mide en radianes (un radián es el ángulo cuyo arco equivale al radio).

De la definición de radián:

 

 una vuelta completa equivale a 2Π radianes en ángulo y 2ΠR en espacio.

El Nºde Vueltas (N) se puede obtener:

N=s/(2πR); donde s es el espacio recorrido

N=φ/(2π); donde φ es el ángulo girado en radianes

 Esta incorporación del radián, nos permite asociar las fórmulas típicas del MRU (Movimiento Rectilíneo Uniforme), al MCU (Movimiento Circular Uniforme) del siguiente modo:

 

 En los Movimientos Circulares Uniformes, se definen además:

Periodo: el tiempo que se tarda en dar una vuelta completa (2π radianes en ángulo y 2πR en espacio)

Frecuencia: el número de vueltas que da en un segundo (se mide en Hz –Herzios que equivale a s-1)

 De ahí que:

PERIODO:         T=2π/w

FRECUENCIA    f=1/T

Es frecuente que en este tipo de ejercicios necesitemos pasar las “revoluciones por minuto” que nos dan como dato de la velocidad angular a rad/s. Un ejemplo de este cambio de magnitudes, usando factores de conversión.

 Ejemplo de paso de rpm a rad/s

 

 Respecto a las COMPONENTES INTRÍNSECAS DE LA ACELERACIÓN, el MCU sólo tiene aceleración normal (la velocidad cambia de dirección, al ajustarse a la circunferencia). No tiene aceleración tangencial ya que al ser de velocidad constante en módulo, la derivada de esta velocidad es nula.

 

IR A EJERCICIOS CON SOLUCIÓN DE MOVIMIENTO CIRCULAR UNIFORME

IR A EJERCICIOS RESUELTOS DE MOVIMIENTO CIRCULAR UNIFORME

VOLVER A MOVIMIENTO CIRCULAR

VOLVER A CINEMÁTICA

IR A FÍSICA POR TEMAS

REGISTRARSE/ENTRAR

Busque lo que necesite en esta web

LO MÁS VISTO

Más Ejercicios de Matemáticas, Física y Química

En matematicasfisicaquimica utilizamos cookies para mejorar tu experiencia al navegar por la web. Consulta nuestra Politica de privacidad.

Acepto las cookies de esta web